

Ferrites for sensor applicatons – design and properties

November 2020

Dr. Aloys Foecker

Head of Ferrite R & D Neosid Pemetzrieder GmbH & Co.KG

> Langenscheid 26-30 58553 Halver Germany

Tel: +49 / 2353 / 71 - 0 Fax: +49 / 2353 / 71 - 54 e-mail: <u>Aloys.Foecker@neosid.de</u> Homepage: <u>www.neosid.de</u>

Topics

Topics

- Common exploited properties of Ferrites
- Forming fields
- Shaping ferrites
- Contacting coils
- Permeability μ changes with
 - frequency temperature air gap excitation level
 - DC bias/magnetic fields mechanical forces
- What do you need?
- Wireless power and data transfer
- Less common exploited properties of Ferrites

Common thought of properties of soft magnetic ferrites:

- "collecting" and shaping of magnetic fields
 => sensors, antennas, transponders
- Increasing "inertia" of electric current
 => chokes, noise suppression, filters, delay lines
- Increase magnetic coupling of conductors
 - => transformers, converters, storage chokes,
 impedance matching

Antennas and Sensors

Metal detection and recognition

Inductive proximity switch: Directing and focussing magnetic field

Non destructive Material testing:

- Material sorting
- e.g. Coin recognition
- Material thickness _
- Crack detection and depth determination
- Imaging of material faults

source http://eddycation.de/

Dry pressing of ferrites

uneven densification => strains and cracks, particularly at the lines where portions of different thicknesses meet

pressed part before sintering

powder column in the mould before pressing

Crack formation in pressed ferrites

Density differences during powder pressing

=> differing densification in thinner and thicker areas of the part can cause crack formation at the intersections

Source:

IEC 60424-2 Ed.2: Ferrite cores - Guidelines on the limits of surface irregularities -Part 2: RM-cores

one-sided two-sided uniaxial dry pressing: areas of differing densification (grey scale)

source: Brevier technical ceramic

Examples for injection molded parts

Isotropic 3D-cube antenna 9x9x9mm

- monolytic, hollow ferrite
- high Q-factor, high sensitivity
- reduction in material and weight

smallest customer specific designs

- wall thickness \geq 0,22mm,
- volume ≥ 1 mm³
- tolerances down to +-1%

SMD transponder coils

- high Q-factor, high sensitivity
- high reliability in vibration und drop tests

Ferrite production at NEOSID

 mixing oxides 	main components	Fe Mn Ni Zn
 pre sintering 	homogenization and formation of the ferrite structure	
• milling	creating a very fine powder	
 compounding 	mixing ferrite powder and binder	
 injection moulding 	1 to 28 cavities	
 barrel finishing 	rounding edges, removing flash	
• sintering	in air or under controlled oxygen concentration	
 annealing 	establishing an optimum domain structure	
• grinding	tight tolerance, fla	at surface, round, thread
grinding,		
	CNC milling of prototypes	
• coating	e.g. parylene, self-locking s	screw cores, metallization
 Inspection 	electrical, geometrical	

Contacting Technologies

Wire wound terminal

Metal pin terminal

Metallized core terminal

Common competitors Metallisations

• Dipping

Dipping in silverpaste, burning in and plating

=> low quality factor caused by eddy currents in end faces

=> Nickel-Zink-Ferrite only

• single layer PVD

selective deposition of e.g. silver

=> poor adhesion

=> dissolves during soldering, does not withstand thermocompression

Metallisation from NEOSID

3-layer PVD

selective deposition of 3 layers where whished for, no burning in

- => reduction of eddy currents
- => works on Manganese- and Nickel-Zink-Ferrite

=> good adhesion

=> withstands soldering and thermocompression

automated 100 % optical inspection

Soft magnetic Ferrites

Soft magnetic Ferrites

NiZn-Ferrites

- µi from 10 to 2.000
- high Q between 0 and 100 MHz
- large electrical resistance
- higher Tc
- sintering in air

MnZn-Ferrites

- µi from 700 to 20.000
- high Q between 0 and 1 MHz
- small electrical resistance
- lower Tc
- sintering under controlled atmosphere only

Influence of Frequency

 $\mu' = permeability$ $\mu'' = losses$

 $Q = \mu'/\mu''$

For lower losses (higher Q) at higher frequencies chose lower µ material

Influence of Temperature

Medium and small μi

• Very small temperature drift

High μ

• Almost linear temperature drift (can be compensated)

Very high μ materials

Initial permeability µ versus temperature (measured on R9.5 toroids, $\hat{B} \leq 0.25 \text{ mT}$) FAL0483-B 30000 μi 20000 15000 10000 5000 0 -60 0 20 °C 160 100 ► T

Very unstable μ => troublesome compensation Complex permeability versus frequency (measured on R9.5 toroids, $\hat{B} \leq 0.25 \text{ mT})$

Sources: TDK-Catalogue

Only for very low frequency applications

Influence of air gap

Air gap: Fraction of magnetic path not running in ferrite material

Sensing Coils are mainly open magnetic circuits with a large air gaps (≈ 50% for a pot core).

The larger the air gap, the less difference in μ_{eff} remains between high and medium μ materials.

μ_{eff} vs. % air gap for varying μi

Influence of excitation level

Initial permeability μ_i is μ measured at low excitation levels (B < 0,5 mT)

μa changes at high excitation levels

With open magnetic circuits

 $\mu_{eff} << \mu_{a}$

B = μeff*μo*H is rather small and sensors usually work in stable μ regime

Influence of DC-Bias and external Fields

Permeability decreases with application of

- DC-bias
- external magnetic fields
- ferrites stay stable up to a certain level and than drop quite fast
- Higher $\boldsymbol{\mu}$ ferrites suffer earlier
- Composites PFS4 and PFS9 drop earlier but slower
- Composite Material PFS3 is extremely stable up to > 1000 mT

Inductivity of transponder-Coil vs. DC-Current

mA DC-Bias

Impact of strong magnetic fields and excessive mechanical force

3 ferrite material classes

NiZn-ferrites F2a to F100b

- Some impact, extremely slow recovery
- complete recovery can be reached only through thermal annealing
- a-Types (like F2a) are less sensitive

MnZn-ferrites F02 and F08

impact, but fast recovery

NiZn-ferrites F1ib, F1is, F5is and Composite Materials

• hardly any impact

Composite materials

- Hardly any impact
- distributed air gap => lower permeability
- Saturation flux density > 1000 mT for PFS3
- Tighter mechanical tolerances
- Easy to machine

What do you need ?

High Q value at your frequency

- wide range of ferrite materials F02 to F100
- number in name gives maximum frequency in MHz for which high Q is still achieved (02 is 0.2 MHz)

Excelent temperature stability

materials F2 to F100 are your choice

High temperature applications

 Materials with Curie Temperature ranging from 150 to 600 °C are available

Highest excitation levels Large DC-Bias or strong external magnetic fields

• PFS3 will do your job

Temporary Magnetic or mechanical stress

• F1ib does not remember the torture

Smallest sizes, Customized shapes

Complicated geometries, Design for automation

 Ceramic Injection Moulding of ferrites turns your vision into products

Contacting Pads, Shielding

Thermal compression of wire ends

Selective metallization of ferrites serves your needs

Medical applications

• Parylene coating gives you coverage

You do not like cables and plugs

Wireless data and power transfer gets rid of cables

Wireless power and data transfer

Rotating scanner system

Energy transfer from primary to secondary side.

Bi-directional data transfer

Wireless power and data transfer

Properties and applications of Ferrites 2

Less common thought of properties of soft magnetic ferrites:

- Magnetostriction
 - => Ultrasonic actuators and sensors, "invisible speakers"
- Lossy interaction with fields from MHz to some GHz
 - => Inductive Heating, selective microwave heating
- Colour and magnetics
 - => Copier powder
- DC-Magnetization
 - => Switchable mechanical forces